Global attractor for the periodic generalized Korteweg-De Vries equation through smoothing

نویسندگان

چکیده

<p style='text-indent:20px;'>We establish a smoothing result for the generalized KdV (gKdV) on torus with polynomial non-linearity, damping, and forcing that matches level gKdV at <inline-formula><tex-math id="M1">\begin{document}$ H^1 $\end{document}</tex-math></inline-formula>. As consequence, we existence of global attractor this equation as well its compactness in id="M2">\begin{document}$ H^s(\mathbb{T}) $\end{document}</tex-math></inline-formula>, id="M3">\begin{document}$ s\in (1, 2). $\end{document}</tex-math></inline-formula></p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness for Periodic Generalized Korteweg-de Vries Equation

In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.

متن کامل

Rough solutions for the periodic Korteweg–de Vries equation

We show how to apply ideas from the theory of rough paths to the analysis of low-regularity solutions to non-linear dispersive equations. Our basic example will be the one dimensional Korteweg– de Vries (KdV) equation on a periodic domain and with initial condition in FLα,p spaces. We discuss convergence of Galerkin approximations, a modified Euler scheme and the presence of a random force of w...

متن کامل

The Generalized Korteweg-de Vries Equation on the Half Line

The initial-boundary value problem for the generalized Korteweg-de Vries equation on a half-line is studied by adapting the initial value techniques developed by Kenig, Ponce and Vega and Bourgain to the initial-boundary setting. The approach consists of replacing the initial-boundary problem by a forced initial value problem. The forcing is selected to satisfy the boundary condition by inverti...

متن کامل

Global Boundary Stabilization of the Korteweg-de Vries-Burgers Equation∗

The problem of global exponential stabilization by boundary feedback for the Korteweg-de Vries-Burgers equation on the domain [0, 1] is considered. We derive a control law of the form u(0) = ux(1) = uxx(1) − k[u(1)3 + u(1)] = 0, where k is a sufficiently large positive constant, and prove that it guarantees L2-global exponential stability, H3-global asymptotic stability, and H3-semiglobal expon...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B

سال: 2023

ISSN: ['1531-3492', '1553-524X']

DOI: https://doi.org/10.3934/dcdsb.2022115